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Challenges associated with missing data in electronic health 

records: a case study of a risk prediction model for diabetes 

using data from Slovenian primary care 

 

Abstract 

The increasing availability of data stored in electronic health records (EHRs) brings 

substantial opportunities for advancing patient care and population health. This is however 

fundamentally dependant on the completeness and quality of data in these EHRs. We sought 

to use EHR data to populate a risk prediction model for identifying patients with 

undiagnosed type 2 diabetes mellitus. We however found substantial (up to 90%) amounts 

of missing data in some healthcare centres. Attempts at imputing for these missing data or 

using reduced dataset by removing incomplete records resulted in a major deterioration in 

the performance of the prediction model. This case study illustrates the substantial wasted 

opportunities resulting from incomplete records by simulation of missing and incomplete 

records in predictive modelling process. Government and professional bodies need to 

prioritise efforts to address these data shortcomings in order to ensure that EHR data are 

maximally exploited for patient and population benefit. 

Keywords: Databases and data mining, Electronic health records, Primary care, Quality 

control, Type 2 diabetes, Missing data.  
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Introduction 

Fundamental to the concept of the learning healthcare system is creating the infrastructure 

to use the data generated as a by-product of healthcare to promote continuous quality 

improvements. Collection of structured data is of high importance in derivation of effective 

chronic disease prediction algorithms such as QDRisk or QRisk2 for predicting the 

development of type 2 diabetes mellitus (T2DM) and cardiovascular disease, respectively 

[1,2]. A major challenge to achieving this however is the recording of high quality data in 

electronic health records (EHRs) [3].  

A recent study by Creswell et al. [4] identified a range of micro, meso and macro level factors 

that contribute to better use and repeated reuse of demographic, process and healthcare data 

to improve the quality and safety of care. The lack of motivation and prioritisation by 

professionals to enter data were identified as key barriers that need to be overcome. As 

observed by Kratz [5] it is expected that more and more technologies and novel approaches 

will become available to minimize the need for manual data entry. O’Brien et al. [6] 

proposed the redesign of the documentation process for nurses, where they concluded, that 

one can expect the value of nursing data will increase in the future and can represent a key 

differentiator for the economic success of the healthcare institutions by higher effectiveness 

and lower costs. 
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This case study aims to raise awareness about a major challenge in exploiting EHR data for 

patient and population health. It is based on an empirical study using data collected in three 

healthcare centres in Slovenia to observe the impact of missing data on predictive 

performance in detecting undiagnosed T2DM. To estimate the effect of missing data, we 

simulated the effects of different amounts of missing values in a complete dataset from two 

out of three healthcare centres included in the study.  

Methods 

Study design and population 

We conducted a cross-sectional study using anonymised EHR data from three healthcare 

centres in Slovenia. EHRs from primary healthcare level providers were used to extract the 

routinely collected data from the Finnish Diabetes Risk Score (FINDRISC) [7] questionnaire 

(an internationally used risk prediction model) including physiological data in numerical 

format. Initially, we extracted records for 17,761 regular health check-ups in all participating 

healthcare centres (HCs) of which 13,072 records were not associated with any diagnosis 

and were used in further analysis. Table 1 presents the information on missing data from the 

three healthcare centres (HC1, HC2 and HC3). Out of the three healthcare centres, HC1 

contained the highest fraction of records with at least one missing value (n=1,760, 99.7 %). 
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We observe less records with missing values in HC2 (n=8,751, 95.9 %) and HC3 (n=1,603, 

73.6 %) with significantly higher percentages of complete records in comparison to HC1.  

Since our aim was to simulate missing and incomplete records while building a predictive 

model, we kept only complete records containing all FINDRISC variables, present fasting 

plasma glucose level (FPGL) measurement, and no indication of type 2 diabetes mellitus 

(T2DM) diagnosis (n = 952) for further analysis. Due to the extremely high number of 

records (1760, 99.7 %), with missing data, we excluded HC1 from further analysis. Out of 

952 participants from the two remaining institutions, 477 (50.1%) were female with mean 

age of 55.4 (95% CI: 54.3-56.5) and 475 (49.9%) male with an average age of 55.3 (95% 

CI: 54.3-56.3) years. 

Predictor variables 

Five numeric (age, height, weight, body mass index (BMI), waist circumference) and six 

dichotomous variables (sex and five FINDRISC questions) were used to build a model. The 

five FINDRISC questions were related to daily physical activity (more than 30 minutes), 

history of high blood pressure, history of high blood glucose, fruit and vegetable 

consumption, and diabetes in family. All 11 variables were used as input variables for 

derivation of a predictive model. Table 2 presents a summary of all predictor values in the 

two healthcare centres included in the study.  
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Table 1. Summary information for all variables used in the study including the percentage of records with 

missing values (in brackets) in three healthcare centers. 

  Missing data (%) 

HC2 

HC3 

 HC1 HC2 HC3 

Age (years) 0.0 0.0 0.0 

Weight (kg) 34.4 18.9 39.3 

Height (m) 44.7 21.7 48.5 

BMI (kg/m2) 46.1 21.9 48.7 

Waist circumference (cm) 46.0 28.2 54.7 

Female (%)  2.4 0.2 0.0 

Physically active? (%) 99.6 95.3 66.3 

High blood pressure history (%) 99.5 95.4 66.9 

High blood glucose history (%) 99.5 95.3 66.5 

Fruit and vegetables consumption (%) 99.5 95.3 66.2 

Diabetes in family (%) 99.5 95.3 66.9 

Fasting plasma glucose (mmol/l) 40.1 21.2 15.2 

Complete records 0.3 4.1 26.4 

 

Outcome 

The outcome in the study was prediction of undiagnosed T2DM based on FPGL. We used a 

FPGL threshold of 7.0 mmol/l (126 mg/dl) resulting in a very imbalanced classification 

problem where number of negative samples strongly outweighs the number of positive 

samples (10.4 % positive samples, n = 99).  
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Table 2. Summary information presenting mean (with corresponding 95% CI) or frequency values for all 

predictor variables from complete records used in the study. 

 HC2 (n=377) HC3 (n=575) 

Age (years) [95% CI]* 56.5 [55.3-57.6] 54.7 [53.7-55.6] 

Weight (kg) [95% CI] 83.9 [82.2-85.5] 81.7 [80.4-83.1] 

Height (m) [95% CI] 168.9 [168-169.9] 167.3 [166.4-168.1] 

BMI (kg/m2) [95% CI] 29.4 [28.8-29.9] 29.7 [28.6-30.8] 

Waist circumference (cm) [95% CI] 98.4 [97-99.7] 94.4 [93.4-95.4] 

Female [n (%)] 175 (46.4%) 302 (52.5%) 

Physically active? [n (%)] 215 (57%) 292 (50.8%) 

High blood pressure history [n (%)] 132 (35%) 206 (35.8%) 

High blood glucose history [n (%)] 149 (39.5%) 131 (22.8%) 

Fruit and vegetables consumption** [n (%)] 329 (87.3%) 510 (88.7%) 

Diabetes in family [n (%)] 160 (42.4%) 172 (29.9%) 

Fasting plasma glucose (mmol/l) 6.1 [6.0-6.2] 5.7 [5.6-5.8] 

 

Statistical analysis 

Least absolute selection and shrinkage operator (LASSO) regularisation based logistic 

regression as defined and implemented by Tibshirani [8] was used to build the predictive 

models. The LASSO was chosen to avoid multicollinearity problems, especially in cases 

where higher proportion of missing data were introduced.  
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The performance of the models was assessed using the following measures: 

1. General predictive performance was tested using the C-statistic that measures the 

balance between sensitivity and specificity by calculating the area under the 

receiver operator curve (AUC) [9]. 

2. The accuracy of probabilistic predictions was measured using Brier score [10]. 

3. Additionally, we calculated the sensitivity, specificity, positive predictive value 

(PPV) and negative predictive value (NPV) of the models [11]. 

Repeated five-fold cross-validation was used to calculate the average value of performance 

measures with corresponding confidence intervals. In five-fold cross-validation evaluation, 

we divide the initial set of samples into five groups containing approximately equal number 

(20%) of samples. In each iteration, we selected four different groups of data for derivation 

of the predictive model and test the model performance on the remaining group of samples. 

Each five-fold cross-validation was repeated 100 times on randomly reshuffled data.  

The initial set of experiments measured the predictive performance of the model built on all 

data available during the cross-validation process. This step was followed by two alternative 

experiments that simulated two approaches to missing and incomplete data. The first 

approach (“exclude”) simulated a scenario where the predictive model was built only from 

complete records. The second approach used the well-known missing value imputation 
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method called missForest [12, 13] to allow inclusion of all records in the model-building 

phase. The missing value imputation by missForest was conducted using the default settings 

proposed by the authors of missForest in [12] with an exception in number of decision trees 

built for each variable that was set to 20. In both cases, we injected the missing data by: 

1. Randomly selecting different percentage of samples (ranging from 5 to 90 in 

steps of 5).  

2. Randomly selecting affected variables in samples selected in step 1. Variables 

were selected randomly using a weighting scheme that took into account the 

percentage of missing values for specific variable in the initial dataset (Table 1). 

By increasing the probability of missing value injection in variables with higher 

percentage of missing data, we achieved a realistic distribution of missing values. 

3. Injecting a missing value for each selected (sample, variable) data point. 
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Ethics and reporting 

The institutional ethics committee approved this study. We have followed the “Transparent 

reporting of a multivariable prediction model for individual prognosis or diagnosis” 

(TRIPOD) initiative guidelines [14]. 

Results 

In this section, we present the results of the predictive performance evaluation for all three 

scenarios discussed above. As it can be observed from Figure 1 and as expected, the 

exclusion of incomplete records resulted in a significantly stronger decrease in AUC 

compared to the alternative scenario of replacing missing values using missForest. For each 

of 100 runs of the experiment, we initially built a LASSO model on full training sets that 

achieved a mean AUC of 0.850 (95% CI: 0.846-0.854) on test sets of the 5-fold cross-

validation. The 95% CIs of predictive performance using LASSO on a full datasets 

compared to results of the missForest approach overlapped up to the point with 20% of 

injected missing values. At 20% of missing data, the missForest approach achieved and AUC 

of 0.841 (95% CI: 0.837-0.846). With ≥20% of missing values injected, the loss of 

performance was significant when missForest based models were used.  

For “exclude” scenario, this value lay at 35% of missing values. There were no significant 

differences in AUC between the missForest and “exclude” approaches all the way up to 75% 
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of injected missing values where the confidence intervals stop overlapping and “exclude” 

starts to return significantly inferior results.  

 
Figure 1. Comparison of AUC for two approaches to classification in presence of randomly injected missing 

values compared to a model built on a complete dataset (grey line with 95% CI in dashed lines). 

The results from the “exclude’ scenario, represented by triangles in Figure 1 observed from 

the right to the left can be used to estimate the relation between the sample size and 

performance of the classification model. This way the rightmost point represents a result 

where only 10% (n = 76) of the available data were used to build a model that achieved an 
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average AUC of 0.801 (95% CI: 0.794-0.808). The second rightmost point represents a 

model performance when the number of available samples doubled (n = 152) resulting in an 

average AUC of 0.812 (95% CI: 0.805-0.818). Following the increase in performance from 

the right to the left (Figure 1) we can estimate the potential of improving the prediction 

performance by adding the records beyond 100 % of all available records. At the same time, 

we can observe the confidence intervals that are becoming narrower with the rising number 

of samples.  

 

Observing the alternative performance metrics, Figure 2 shows no significant differences 

between the tested scenarios, except in cases with extremely high number of missing values. 

Figure 2 also shows the PPV metric with relatively low values for both approaches, a result 

commonly seen in imbalanced classification problems. PPV fell significantly below the 

performance of the basic model when the number of missing values passed 40%. The true 

effectiveness of the missing value imputation versus exclusion can be observed in the last 

plot of Figure 2, where we can observe the fraction of persons selected for screening by the 

predictive model. The missForest based model is not only better in AUC, but also selects a 

lower number of persons for further examinations at the same time, especially with the 

highest fraction of missing values.  
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Figure 2. Sensitivity, positive predictive value (PPV) and fraction of selected samples by the predictive 

model for different levels of missing values.  
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Discussion 

In this study, we demonstrate the effects of incomplete and missing primary healthcare data 

in developing a predictive model for undiagnosed T2DM. We observed a significant drop in 

predictive performance for the data imputation approach with only 20% of missing data. In 

data obtained from three healthcare centres in Slovenia, we observed high fractions of 

incomplete data ranging from 73.6% up to 99.8% observed in one of the healthcare centres. 

Compared to results achieved in a similar study [15] using a more common FINDRISC 

questionnaire to predict presence of undiagnosed T2DM, a model built on full dataset in this 

study performed very well. However, there was a significant difference in approach to data 

collection in both studies. There are some very different challenges a researcher will have to 

confront when the data are collected using a paper-and-pencil questionnaire in comparison 

to analysis of routinely collected data from EHRs. In this study, we focused on missing data 

that frequently originates from lack of motivation to enter the data [4]. The fraction of 

missing data observed in this study was high, especially for variables where reporting to the 

National Institute of Public Health was not mandatory. 

High variance of results that was observed in some results (Figure 1) can be attributed to 

different factors, where class imbalance represents an important factor. With only 9.1% of 

positive samples, where we could confirm the undiagnosed T2DM, our problem could be 
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classified as highly-imbalanced problem. On the other hand, in most similar studies one can 

meet even lower fractions of positive class, especially in cases where the sample is limited 

to younger population groups [16, 17].  

Our observations from three healthcare centres in Slovenia suggest that there are extremely 

large proportions of incomplete records stored in medical information systems on the 

primary healthcare level. To demonstrate the impact of incomplete records on the final 

predictive performance of the models build on such data, we conducted an experimental 

study. By randomly injecting missing variable values we were able to show a significant 

drop in performance when 35% of records were either missing or were incomplete. The 

impact of missing values on predictive performance can be reduced by using a missing value 

replacement using methods such as missForest, but their contribution seems to significantly 

affect the predictive performance only in cases with an extremely high percentage of missing 

values. This is also true in cases where the fraction of persons selected for further 

examinations is observed. By selecting more cases than missForest model, the usage of 

“exclude” model leads to higher costs for the healthcare system. When observing the 

performance of the classifier built in exclusion scenario, one can observe a positive trend 

when the percentage of missing values decreases, meaning access to more records would 

further improve the performance of the classifier.  
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However, even data imputation techniques can result in misleading conclusions, especially 

in case of so called missing at random (MAR) scenarios [18]. On the other hand, researchers 

also report misleading results in case of using simple approaches for dataset modification 

such as discarding observations or ad-hoc replacement of missing values [19]. To some 

extent, we can solve this kind of problems by using classification models that can implicitly 

handle missing values (e.g. decision trees [20]).   

Conclusions 

Recent studies emphasise the importance of motivation for entering the data to improve the 

learning health systems of the future. To raise awareness on this issue, the health data science 

community needs to organise a number of events that highlight both the clinical and research 

importance and value on striving towards more complete datasets. One such use case was 

demonstrated in this study. Using simulation of missing values, we were able to detect the 

significant drop of performance even in cases where only one-third of records were missing 

or incomplete.  
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